STRONG UNIQUENESS SETS AND \(t\)-ANALYTIC SETS
FOR \(H^\infty\) AND \(H^\infty + C\)

by

Raymond Mortini

Abstract. — We determine the relations of the \(t\)-analytic sets for the algebra \(H^\infty\) of bounded holomorphic functions in the unit disk with those in the Sarason algebra \(H^\infty + C\) and give a description of the strong uniqueness sets for these algebras.

13.1.2011

1. Introduction

In this note we introduce the notion of strong uniqueness sets for Banach function algebras \(A\) and compare this class of sets with the recently introduced \(t\)-analytic sets for \(A\). Recall that a subset \(E\) of the spectrum \(M(A)\) of \(A\) is said to be \(t\)-analytic, (denoted by \(E \in \mathcal{A}\)), if for every \(f \in A\) and every open set \(U\) in \(M(A)\) with \(U \cap E \neq \emptyset\) one has \(f \equiv 0\) on \(E\) whenever \(f \equiv 0\) on \(E \cap U\). For example the empty set and every singleton is a \(t\)-analytic set. Also, each point in \(M(A)\) is contained in a maximal, though not necessary unique, \(t\)-analytic set (see [2]).

A nonvoid set \(E \subseteq M(A)\) is called a uniqueness set for \(A\), if for every \(f\) and \(g\) in \(A\), \(f = g\) whenever \(f\) and \(g\) coincide on \(E\). If this property also holds locally, that is, if for every open set \(U\) in \(M(A)\) with \(U \cap E \neq \emptyset\), \(f|_{U \cap E} = g|_{U \cap E}\) implies \(f = g\), then we say that \(E\) is a strong uniqueness set for \(A\). The set of strong uniqueness sets for \(A\) is denoted by \(\mathcal{U}\).

It is clear that any strong uniqueness set is a \(t\)-analytic set. These classes are different though, since for example a singleton \(\{x\}\) is a strong uniqueness set if and only if \(M(A) = \{x\}\) (and so \(A = C(\{x\}) \cong \mathbb{C}\)). We remark that a

2010 Mathematics Subject Classification. — Primary 46J15 ; Secondary 30H50.

Key words and phrases. — bounded holomorphic functions; \(t\)-analytic sets; strong uniqueness sets; Sarason algebra; Banach function algebras.
t-analytic set E is a strong uniqueness set if and only if the hull-kernel closure \hat{E} of E equals $M(A)$. Recall that \hat{E} is the zero set (or hull) of the ideal $I(E, A) = \{ f \in A : \text{f}|E \equiv 0 \}$.

The concept of t-analytic sets, originally considered only for open sets in $[1]$ in connection with local/restricted decomposability of multiplication operators on commutative, semisimple Banach algebras, was first given in this generality in $[2]$. It turned out that it has a surprising connection to closed prime ideals: if $E \subseteq M(A)$ is a t-analytic set for A, then the ideal $I(E, A)$ is a closed prime ideal. We also unveiled the connection of t-analytic sets with ideals of the form $J(x, A) = \{ f \in A : \text{f vanishes identically on a neighborhood of } x \text{ in } M(A) \}$, that appear in problems on spectral synthesis for Banach function algebras (see for example $[5]$). In fact, if $E \in \mathcal{A}$ and $x \in E$, then E is contained in the zero set $k_{A}(x)$ of the ideal $J(x, A)$.

A description of the t-analytic sets in concrete algebras seems to be a very hard problem. At the moment, such a characterization is only known for the disk-algebra and general regular function algebras (see $[2]$). In the present paper we will be concerned with the t-analytic sets in the algebra H^{∞} of bounded analytic functions in the open unit disk D and its associated Sarason algebra $H^{\infty} + \mathbb{C}$ of sums of boundary values of functions in H^{∞} and (complex-valued) continuous functions on the unit circle T. We assume that the reader is familiar with the structure of the maximal ideal spaces of these algebras (see $[4]$).

First results in this direction were given in $[2]$. For example, it is known $[2]$ that in $H^{\infty} + \mathbb{C}$ the t-analytic sets are very small. In fact, if E is a t-analytic set for $H^{\infty} + \mathbb{C}$ then, due to the fact that $E \subseteq k_{H^{\infty} + \mathbb{C}}(x)$ for some $x \in E$, the set E is nowhere dense and contained in a single fiber.

The situation for H^{∞} is quite different. Here $k_{H^{\infty}}(x)$ equals $M(H^{\infty})$ for every $x \in M(H^{\infty})$. Moreover, t-analytic sets for H^{∞} may be big. For example, the unit disk D is a t-analytic set for H^{∞}. Hence, by the corona theorem, the whole spectrum $M(H^{\infty})$ is the maximum t-analytic set for H^{∞}. But also the Shilov boundary, ∂H^{∞}, of H^{∞} is a t-analytic set for H^{∞}. Or the uniqueness set $[0, 1]$. On the other hand, the uniqueness set $[0, 1] \cup \{-1/2\}$ is not t-analytic. Neither the corona $M(H^{\infty}) \setminus D$ is a t-analytic set for H^{∞}.

A way for comparing t-analytic sets for H^{∞} with those of $H^{\infty} + \mathbb{C}$ comes from the fact that the spectrum $M(H^{\infty} + \mathbb{C})$ of $H^{\infty} + \mathbb{C}$ can be identified with the corona $M(H^{\infty}) \setminus D$ of D in $M(H^{\infty})$. Also, the Shilov boundaries for H^{∞} and $H^{\infty} + \mathbb{C}$ coincide and can be identified with $M(L^{\infty})$, the maximal ideal space of the algebra of (equivalence classes) of Lebesgue measurable and essentially bounded functions on T.
Natural questions now arise. For instance, which \(t \)-analytic sets for \(H^\infty + C \) are \(t \)-analytic for \(H^\infty \)? Are there essentially other \(t \)-analytic sets for \(H^\infty \) besides those mentioned above? Can we describe all the strong uniqueness sets for \(H^\infty \), respectively \(H^\infty + C \)?

In this paper we give answers to these questions.

We conclude the introduction with some additional notations used throughout the paper. For a Banach function algebra \(A \), we always consider \(A \) as a set of continuous functions that live on \(M(A) \).

If \(f \in A \), then \(Z(f) = \{ x \in M(A) : f(x) = 0 \} \) is the zero set of \(f \). If \(I \) is an ideal in \(A \), then \(Z(I) = \bigcap_{f \in I} Z(f) \) is the zero set (or hull) of \(I \). The interior of a subset \(E \) of a topological space \(X \) will be denoted by \(E^o \); its closure by \(\overline{E} \). If \(X \subseteq M(A) \), then \(Z_X(f) = Z(f) \cap X \).

2. Some general facts on strong uniqueness sets

It is known that \(E \) is a \(t \)-analytic set for \(A \) if and only if the closure \(\overline{E} \) of \(E \) is one (see [2]). The same property is valid for the class of strong uniqueness sets:

\[\text{Proposition 2.1.} \quad \text{Let } A \text{ be a Banach function algebra. Then } E \subseteq M(A) \text{ is a strong uniqueness set for } A, \text{ that is } E \in \mathcal{U}, \text{ if and only if } \overline{E} \in \mathcal{U}. \]

\[\text{Proof.} \quad \text{Assume that } E \in \mathcal{U}. \text{ Let } U \subseteq M(A) \text{ be open, } U \cap \overline{E} \neq \emptyset, \text{ and let } f \equiv 0 \text{ on } U \cap \overline{E}. \text{ Then } U \cap E \neq \emptyset \text{ and } f \equiv 0 \text{ on } U \cap E. \text{ Hence } f \text{ is the zero function. Thus } \overline{E} \in \mathcal{U}. \]

Conversely, let \(\overline{E} \in \mathcal{U} \). Let \(U \subseteq M(A) \) be open, \(U \cap \overline{E} \neq \emptyset \), and \(f \equiv 0 \) on \(U \cap \overline{E} \). Then the openness of \(U \) and the continuity of \(f \) imply that \(f \equiv 0 \) on \(U \cap E \). Hence \(f \) is the zero function, too. Thus \(E \in \mathcal{U} \). \(\square \)

As an immediate consequence we have

\[\text{Corollary 2.2.} \quad \text{Let } E \subseteq F \subseteq \overline{E}. \text{ Then } F \in \mathcal{U} \text{ whenever } E \in \mathcal{U}. \]

\[\text{Observation 2.3.} \quad \text{Let } E \in \mathcal{U} \text{ and suppose that } F \text{ is closed. Then } E \setminus F \in \mathcal{U} \cup \{ \emptyset \}. \text{ In other words, every nonvoid relatively open subset of a strong uniqueness set belongs to } \mathcal{U}, \text{ too.} \]

Whereas the set \(\mathcal{O} \) of \(t \)-analytic sets always contains the empty set and the singletons, its subset \(\mathcal{U} \) of strong uniqueness sets may be void. Indeed, this happens quite frequently, as the following result shows.

\[\text{Theorem 2.4.} \quad \text{If the set of strong uniqueness sets for a Banach function algebra is not empty, then the spectrum of } A \text{ is connected.} \]
Proof. — We show the contraposition. Suppose that $M(A)$ is disconnected. Then there are at least two disjoint open-closed sets S_1 and S_2 such that $S_1 \cup S_2 = M(A)$. Let $E \subseteq M(A)$. Without loss of generality, we may assume that $E \cap S_2 \neq \emptyset$. By Shilov’s idempotent theorem, (see [3, p. 88]), there is a function $f \in A$ such that $f \equiv 1$ on S_1 and $f \equiv 0$ on S_2. Now we choose $U = S_2$. Then U is open, $f \equiv 0$ on $U \cap E$, but f is not the zero function. Hence $E \notin \mathcal{U}$.

Of course the connectivity condition above is far from being sufficient for \mathcal{U} to be non-empty. In fact, $\mathcal{U} = \emptyset$ for any regular algebra strictly containing \mathbb{C}. But \mathcal{U} may be empty, too, for other algebras with connected spectrum, as for example $H^\infty + \mathbb{C}$ (see Theorem 3.1).

Lemma 2.5. —

1. If $M(A)$ is not a strong uniqueness set, then there exists $x \in M(A)$ such that $k_A(x) \nsubseteq M(A)$.
2. If $\mathcal{U} = \emptyset$, then the set of points x for which $k_A(x) \nsubseteq M(A)$, is dense in $M(A)$.

Proof. — (1) Since $M(A) \notin \mathcal{U}$ there exists a nonvoid open set $V \subseteq M(A)$ and $f \in A$ such that $f \equiv 0$ on V but $f \neq 0$. Hence, for any $x \in V$, we have $k_A(x) \nsubseteq M(A)$.

(2) Let $\emptyset \neq V$ be open in $M(A)$. Since $\mathcal{U} = \emptyset$, $V \notin \mathcal{U}$. Hence there is a second open set V' such that $V \cap V' \neq \emptyset$ and a non-constant function $f \in A$ such that $f \equiv 0$ on $V \cap V'$. Thus any $x \in V \cap V'$ has the property that $k_A(x) \nsubseteq M(A)$.

Proposition 2.6. — If for every $x \in M(H^\infty)$, $k_A(x)$ is a proper subset of $M(A)$, then $\mathcal{U} = \emptyset$.

Proof. — Let $E \subseteq M(A)$. Choose $x \in E$. Since $k_A(x) \neq M(A)$, there exists $y \in M(A) \setminus k_A(x)$ and a function $f \in J(x, A)$ with $f(y) \neq 0$. Hence $f \equiv 0$ on $E \cap Z(f)^c \neq \emptyset$, but $f \neq 0$. Therefore, E is not a strong uniqueness set.

 Whereas the union of two t-analytic sets is, in general, not t-analytic, (even if they are non-disjoint and connected), (see [2]), we have the following result concerning the subclass of strong uniqueness sets.

Proposition 2.7. — Any union of strong uniqueness sets in a Banach function algebra is a strong uniqueness set again.

Proof. — Let $E_\alpha \in \mathcal{U}$, and set $E = \bigcup E_\alpha$. Note that strong uniqueness sets are never empty. Let U be open and suppose that $f \equiv 0$ on $U \cap E$. We assume that this last set is non empty. Hence there exists α such that $U \cap E_\alpha \neq \emptyset$. Since $f \equiv 0$ on $U \cap E_\alpha$, our hypothesis implies that $f \equiv 0$. Thus $E \in \mathcal{U}$.
The class \mathcal{U}, though, is not stable with respect to intersections; even if those intersections are non-empty. For example, $[-1,0]$ and $[0,1]$ are strong uniqueness sets for the disk-algebra $A(\mathbb{D})$, but their intersection not.

Corollary 2.8. — Let A be a Banach function algebra for which $\mathcal{U} \neq \emptyset$. Then there exists a maximum strong uniqueness set.

Note that in the class of t-analytic sets for A there always exist maximal elements; but, in general, no maximum t-analytic set (see [2]).

In [2, Example 2.4], an example of a compact set $K = K_1 \cup K_2 \subseteq \mathbb{C}$ is given which shows that for the algebra $A = A(K)$ of all functions continuous on K and holomorphic in the interior K° of K, K_1 and K_2 are (non-disjoint) maximal t-analytic sets. Moreover, $k_A(z) = K = M(A)$ for every $z \in K_1$ and $k_A(z) = K_2 \subseteq M(A)$ for any $z \in K_2 \setminus K_1$. Here we can now add that K_1 is the maximum strong uniqueness set for $A(K)$ (see figure 1).

![Figure 1. An instructive example](image)

Corollary 2.9. — Let A be a Banach function algebra for which $\mathcal{U} \neq \emptyset$. Then the biggest strong uniqueness set, E_{max}, is also a maximal t-analytic set.

Proof. — Obviously E_{max} is t-analytic. Now let $E_{\text{max}} \subseteq E$ for some t-analytic set E. We show that $E \in \mathcal{U}$. Let U be open, $U \cap E \neq \emptyset$, and suppose that $f \equiv 0$ on $U \cap E$. Since E is t-analytic, $f \equiv 0$ on E_{max}. In particular $f \equiv 0$ on E_{max}. But $\hat{E_{\text{max}}} = M(A)$. Hence $f \equiv 0$ and so $E \in \mathcal{U}$. The maximality of E_{max} now implies that $E = E_{\text{max}}$.

\[\square \]
3. Strong uniqueness sets and \(t \)-analytic sets for \(H^\infty + C \)

We start with the following results from [2]; except item 4. Recall that a thin point \(x \in M(H^\infty) \setminus \mathbb{D} \) is any point lying in the \(M(H^\infty) \)-closure of a sequence \((z_n) \in \mathbb{D}^\mathbb{N} \) satisfying

\[
\lim_{j \to \infty} \prod_{n \neq j} \rho(z_n, z_j) = 1,
\]

where \(\rho(z, w) = |(z-w)/(1-\overline{z}w)| \) is the pseudohyperbolic distance. Moreover, \(P(x) \) is the Gleason part associated with a point \(x \in M(H^\infty + C) \). The zero sets \(k_{H^\infty + C}(x) \) of the ideals \(I(x, H^\infty + C) \) are called \(k \)-hulls and will be denoted by \(k(x) \). See [5, 7, 8] for a detailed study of these \(k \)-hulls.

Theorem 3.1.
1. Let \(E \) be a \(t \)-analytic set for \(H^\infty + C \) and suppose that \(x \in E \). Then \(E \subseteq k(x) \).
2. If the \(t \)-analytic set \(E \) meets the Shilov boundary of \(H^\infty + C \), then \(E \) is a singleton.
3. If \(E \) is a maximal \(t \)-analytic set containing the thin point \(x \), then \(E = P(x) \).
4. There are no strong uniqueness sets for \(H^\infty + C \).

Proof. (4) This follows from Proposition 2.6 and the fact that for each \(x \in M(H^\infty + C) \), \(k(x) \neq M(H^\infty + C) \) (see [5]).

It is conjectured that in \(H^\infty + C \) all maximal \(t \)-analytic sets and all hull-kernel closed \(t \)-analytic sets with cardinal bigger than 2 are given by the closures of Gleason parts (see [2]).

4. \(t \)-analytic sets for \(H^\infty \)

In [2] it was implicitly shown that in the disk-algebra the class of \(t \)-analytic sets with cardinal bigger than two and the class of strong uniqueness sets coincide. In \(H^\infty \), the class of \(t \)-analytic sets containing more than one point is much bigger than \(\mathcal{U} \). For instance, the closure of any non-trivial Gleason part in the corona of \(H^\infty \) is \(t \)-analytic, but obviously not a uniqueness set (see [2]).

However, if the set \(E \) belongs to the Shilov-boundary, \(\partial H^\infty \), of \(H^\infty \), then the result just mentioned for \(A(\mathbb{D}) \) remains valid.

Proposition 4.1. A nonvoid set \(E \subseteq \partial H^\infty \) is \(t \)-analytic for \(H^\infty \) if and only if \(E \) is either a singleton or a strong uniqueness set.

Proof. One direction being obvious, we need only show that every \(t \)-analytic set \(E \) with \(E \subseteq \partial H^\infty \) and containing at least two points is a strong uniqueness
set for H^∞. In fact, by [2], the ideal $I(E, H^\infty)$ is a closed prime ideal. By [9, Theorem 3.3], any non-zero closed prime ideal whose hull meets the Shilov boundary, is maximal. Thus $I(E, H^\infty) = \{0\}$ whenever E contains at least two points. Hence E is a strong uniqueness set in that case. □

In what follows, let $\hat{\sigma}$ denote the lifted Lebesgue measure defined on the Borel sets of the extremely disconnected set $M(L^\infty)$ (see [3, p. 17]). Recall that for any $f \in L^\infty$,

$$\int_T f \, d\sigma = \int_{M(L^\infty)} f \, d\hat{\sigma},$$

and that $\hat{\sigma}(B^c) = \hat{\sigma}(B) = \hat{\sigma}(\overline{B})$ for any Borel set $B \subseteq M(L^\infty)$. Here \hat{f} is the Gelfand transform of $f \in L^\infty$. The characteristic function of a set $S \subseteq \mathbb{T}$ is denoted by χ_S. Similarly for sets in $M(L^\infty)$. It is well known that the sets

$$\{\hat{\chi}_S = 1\} := \{x \in M(L^\infty) : \hat{\chi}_S(x) = 1\},$$

$S \subseteq \mathbb{T}$ Lebesgue-measurable, form a basis of closed-open sets for the topology on $M(L^\infty)$ (see [3, p. 17]).

Let QC be the algebra of quasi-continuous functions on \mathbb{T}; that is QC is the biggest C^*-subalgebra of $H^\infty + C$. Moreover, let $QA = QC \cap H^\infty$. See [10, 11] for a thorough study of these algebras.

The following Lemma has been communicated to me by Keiji Izuchi.

Lemma 4.2. — Let E be a nonvoid closed subset of $M(L^\infty)$ with $\hat{\sigma}(E) = 0$. Then there exists a non-constant function $f \in H^\infty$ such that $f \equiv 0$ on E.

Proof. — Let K_n be a sequence of closed-open sets in $M(L^\infty)$ satisfying

$$E \subseteq K_{n+1} \subseteq K_n$$

and $\hat{\sigma}(K_n) \to 0$. Let

$$F = \sum_{n=1}^\infty (1 - \chi_{K_n})/n^2.$$

Then $F \in C(M(L^\infty))$. Hence there is $q \in L^\infty$ such that $\hat{q} = F$. Moreover,

$$F \equiv 0 \text{ on } P := \bigcap_{n=1}^\infty K_n.$$

Note that $E \subseteq P$ and that $\hat{\sigma}(P) = 0$. By Wolff [11, Theorem 1], there is a nonzero $f \in QA$ such that $f F \in QC$. Then, with $X = M(L^\infty)$,

$$Z_X(f) = Z_X(f) \cup Z_X(F) = Z_X(f) \cup P.$$

Since $Z_X(f) \cup P$ has lifted Lebesgue measure 0, we deduce from [11, Lemma 2.3] that $Z_X(f) \cup P$ is a weak peak interpolation set for QA. Hence there is a non-constant $g \in QA$ such that $g \equiv 0$ on $Z_X(f) \cup P \supseteq E$. □
Theorem 4.3. — Let E be a nonvoid closed subset of ∂H∞. The following assertions are equivalent:

1. E is a strong uniqueness set for H∞;
2. For every Lebesgue measurable set S ⊆ T with strictly positive Lebesgue measure either \(\hat{\sigma}(E \cap \{\hat{\chi}_S = 1\}) > 0 \) or \(E \cap \{\hat{\chi}_S = 1\} = \emptyset \).

In particular, \(\partial H^\infty \in \mathcal{U} \).

Proof. — (2) ⇒ (1): Let \(U \subseteq M(H^\infty) \) be any open set with \(U \cap E \neq \emptyset \). Let \(x \in U \cap E \). Then there is a Lebesgue measurable set \(S \subseteq T \) with \(\sigma(S) > 0 \) such that

\[
x \in \{\hat{\chi}_S = 1\} \subseteq U \cap M(L^\infty).
\]

Hence \(\emptyset \neq E \cap \{\hat{\chi}_S = 1\} \subseteq E \cap U \). Suppose that for some \(f \in H^\infty \backslash \{0\} \), \(Z(f) \cap \partial H^\infty \) has lifted Lebesgue measure 0. Our hypothesis that \(\hat{\sigma}(E \cap \{\hat{\chi}_S = 1\}) > 0 \) now implies that \(f \) is the zero function in \(H^\infty \). Hence \(E \in \mathcal{U} \).

(1) ⇒ (2) will be proven via contraposition. So suppose \(E \subseteq \partial H^\infty = M(L^\infty) \) satisfies \(E \cap \{\hat{\chi}_S = 1\} \neq \emptyset \), but

\[
\hat{\sigma}(E \cap \{\hat{\chi}_S = 1\}) = 0
\]

for some measurable set \(S \subseteq T \) of positive Lebesgue measure. By Lemma 4.2, there is a non-constant \(f \in H^\infty \) with \(f \equiv 0 \) on \(E \cap \{\hat{\chi}_S = 1\} \). Hence \(E \) cannot be a strong uniqueness set for \(H^\infty \).

Is it possible to give a description of the strong uniqueness sets \(E \) in \(\partial H^\infty \) using only properties of \(H^\infty \) when viewed as a set of functions defined on \(T \)?

For example let \(S \) be a measurable subset of \(T \). Then \(S \) is a ‘strong uniqueness set’ for \(H^\infty|_T \) if and only if \(\sigma(S \cap I) > 0 \) for every open arc \(I \subseteq T \) with \(S \cap E \neq \emptyset \). Which relations can one expect between \(S \) and \(E \)?

Next we compare the \(t \)-analytic sets for \(H^\infty \) and \(H^\infty + C \).

Lemma 4.4. — Let \(x \in M(H^\infty + C) \). Denote the identity function on \(T \) by \(z \). Then the \(k \)-hull \(k(x) \) of \(x \) is contained in a single fiber

\[
M_\lambda = \{m \in M(H^\infty + C) : m(z) = \lambda\},
\]

\(|\lambda| = 1\).

Proof. — The assertion follows from the facts that \(k(x) \) is contained in a unique \(C(T) \)-level set

\[
E_\lambda = \{m \in M(H^\infty + C) : m(f) = f(\lambda) \text{ for every } f \in C(T)\}
\]

which coincides with the fibers.
We shall need several times the following Lemma, whose first assertion is a special case of [5, Lemma 2.4].

Lemma 4.5. — Let \(x \in M(H^\infty + C) \setminus \partial H^\infty \). Then the ideal \(J(x, H^\infty + C) \) is algebraically generated by Blaschke products. Moreover, \(k(x) \) is hull-kernel closed in \(H^\infty \).

Proof. — Since \(J := J(x, H^\infty + C) \) is generated by Blaschke products, we have that \(k(x) = \bigcap_{B \in J} Z(B) \). Accordingly, for every \(y \in M(H^\infty) \setminus k(x) \), there exists a Blaschke product \(B \in J \) with \(B \equiv 0 \) on \(k(x) \), but \(B(y) \neq 0 \). Thus \(k(x) \) is hull-kernel closed in \(H^\infty \).

Lemma 4.6. — Let \(E \subseteq M(H^\infty) \setminus \mathbb{D} \) be a \(t \)-analytic set for \(H^\infty \) and let \(x \in E \setminus \partial H^\infty \). Then \(E \subseteq k(x) \).

Proof. — By Lemma 4.4, \(k(x) \) is contained in a single fiber. In particular, \(M(H^\infty + C) \setminus k(x) \neq \emptyset \). So let \(y \in M(H^\infty + C) \setminus k(x) \). Hence \(E \cap U \neq \emptyset \). Choose an open set \(U \) in \(M(H^\infty + C) \) with \(x \in U \). Note that \(E \cap U \neq \emptyset \). Choose an open set \(V \) in \(M(H^\infty) \) such that \(U = V \cap M(H^\infty + C) \). Then \(B \equiv 0 \) on \(E \cap V = E \cap U \). Since \(E \) is \(t \)-analytic for \(H^\infty \), we conclude that \(y \notin E \). Hence \(E \subseteq k(x) \).

Theorem 4.7. — Let \(E \subseteq M(H^\infty) \setminus \mathbb{D} \) be a \(t \)-analytic set for \(H^\infty \). Then \(\overline{E} \) either is entirely contained in the Shilov boundary or in \(M(H^\infty + C) \setminus \partial H^\infty \).

Proof. — Assume that there is \(x \in E \setminus \partial H^\infty \). By Proposition 2.1, \(\overline{E} \) is \(t \)-analytic. Hence, by Lemma 4.6, \(\overline{E} \subseteq k(x) \). By [5], \(k(x) \cap \partial H^\infty = \emptyset \). Thus \(\overline{E} \) does not meet \(\partial H^\infty \).

Theorem 4.8. — Let \(E \) be a set in \(M(H^\infty) \setminus \mathbb{D} \) that does not meet the Shilov boundary of \(H^\infty \). Then \(E \) is \(t \)-analytic for \(H^\infty \) if and only if \(E \) is \(t \)-analytic for \(H^\infty + C \).

Proof. — If \(E \) is \(t \)-analytic for \(H^\infty + C \), then it is easily seen that \(E \) is \(t \)-analytic for \(H^\infty \). Indeed, it suffices to observe that any open set \(U \) in \(M(H^\infty) \) induces the open set \(U \cap M(H^\infty + C) \) in \(M(H^\infty + C) \).

Conversely, let \(E \subseteq M(H^\infty + C) \) be \(t \)-analytic for \(H^\infty \) with \(E \cap \partial H^\infty = \emptyset \). Let \(f \in H^\infty + C \) vanish identically on \(E \cap \Omega \) for an open set \(\Omega \subseteq M(H^\infty + C) \) with \(E \cap \Omega \neq \emptyset \). Let \(x \in E \). Since \(E \cap \partial H^\infty = \emptyset \) we may use Lemma 4.6 to conclude that \(E \subseteq k(x) \). Moreover, by Lemma 4.4, \(k(x) \) is contained in a single fiber \(M_\lambda \). Now on fibers, \((H^\infty + C)|_{M_\lambda} = H^\infty|_{M_\lambda} \). Thus we may choose \(F \in H^\infty \) such that \(F = f \) on \(M_\lambda \). Now for any open set \(W \) in \(M(H^\infty) \) with \(W \cap M(H^\infty + C) = \Omega \), we have \(F \equiv 0 \) on \(W \cap E \). Since \(E \) is \(t \)-analytic for \(H^\infty \), \(F \equiv 0 \) on \(E \) and so does \(f \). Hence \(E \) is \(t \)-analytic for \(H^\infty + C \).
Recall that a point \(x \in E \subseteq X \), \(X \) a topological space, is said to be an isolated point (for \(E \)), if there exists an open neighborhood \(U \) of \(x \) such that \(U \cap E = \{x\} \).

It follows as a special case of [2, Corollary 4.11] that if \(E \) is a \(t \)-analytic set for \(A \), then \(E \) either is a singleton or does not contain an isolated point.

Theorem 4.9. — Let \(E \) be a subset of \(\mathbb{D} \). Suppose that \(E \) contains more than one point. Then the following assertions are equivalent:

1. \(E \) is a strong uniqueness set for \(H^\infty \);
2. \(E \) is \(t \)-analytic for \(H^\infty \);
3. \(E \) does not contain any isolated point.

Proof. — (1) \(\implies \) (2) trivial.
(2) \(\implies \) (3) Suppose to the contrary that \(z_0 \in E \) is an isolated point. The function \(z - z_0 \) then vanishes in a relative open neighborhood of \(E \), but not at any other point. Thus \(E \) is no longer a \(t \)-analytic set.
(3) \(\implies \) (1) This follows immediately from the fact that the zeros of non-constant holomorphic functions are discrete (in \(\mathbb{D} \)). \(\square \)

Theorem 4.10. — Let \(E \) be a \(t \)-analytic set for \(H^\infty \) such that \(E \cap \mathbb{D} \neq \emptyset \).
Then
\[
E \subseteq \partial H^\infty \cup \overline{E \cap \mathbb{D}}.
\]

Proof. — Suppose contrariwise that there is some \(x \in E \setminus \partial H^\infty \) and \(x \notin \overline{E \cap \mathbb{D}} \).
Let \(z_0 \in E \cap \mathbb{D} \). Choose, as in Lemma 4.6, a Blaschke product \(B \) such that \(B \) vanishes identically on a neighborhood \(U^* \) of \(x \) in \(M(H^\infty + C) \). Let the open subset \(U \) of \(U^* \) satisfy \(x \in U \) and \(U \cap \overline{E \cap \mathbb{D}} = \emptyset \). We may also assume that \(B(z_0) \neq 0 \) (otherwise we just delete the zero \(z_0 \)). Let \(V \subseteq M(H^\infty) \) be open with \(V \cap M(H^\infty + C) = U \), \(z_0 \notin V \) and \(V \cap \overline{E \cap \mathbb{D}} = \emptyset \). Note that
\[
E \setminus (\overline{E \cap \mathbb{D}}) \subseteq M(H^\infty + C).
\]
Then
\[
V \cap E = V \cap (E \setminus \overline{E \cap \mathbb{D}}) = V \cap (E \setminus \overline{E \cap \mathbb{D}}) \cap M(H^\infty + C)
= U \cap (E \setminus \overline{E \cap \mathbb{D}}) = (U \cap E) \setminus \overline{E \cap \mathbb{D}} = U \cap E.
\]
Hence \(B \equiv 0 \) on \(V \cap E \), but \(B(z_0) \neq 0 \). Accordingly, \(E \) is not \(t \)-analytic. \(\square \)

As an immediate Corollary we have the following corona-type theorem.

Corollary 4.11. — Let \(E \) be a closed \(t \)-analytic set for \(H^\infty \) with \(E \cap \mathbb{D} \neq \emptyset \) and \(E \cap \partial H^\infty = \emptyset \). Then \(E = \overline{E \cap \mathbb{D}} \).

Let us note that the set of non-closed \(t \)-analytic sets for \(H^\infty \) is very huge. For example, in view of Corollary 2.2 one has that for all \(S \subseteq M(H^\infty + C) \) the set \(\mathbb{D} \cup S \) is a strong uniqueness set for \(H^\infty \).
Theorem 4.12. — Let $E \subseteq M(H^\infty)$ and suppose that $E \cap \mathbb{D} \neq \emptyset$ or $E \subseteq \partial H^\infty$. Then the following assertions are equivalent:

1. E is a strong uniqueness set for H^∞;
2. E is t-analytic for H^∞ and contains more than one point.

Proof. — (1) \implies (2) is trivial. By Proposition 4.1, (2) \implies (1) whenever $E \subseteq \partial H^\infty$. Now suppose that $E \cap \mathbb{D} \neq \emptyset$ and that E contains more than one point. As previously mentioned, the t-analyticity of E implies that $E \cap \mathbb{D}$ does not contain any isolated point. Hence, by Theorem 4.9, $E \cap \mathbb{D}$ is a strong uniqueness set. By Proposition 2.1, this implies that $E \cap \mathbb{D}$ is in \mathcal{U}, too.

Consider now the set $S := E \setminus E \cap \mathbb{D}$.

If $S = \emptyset$, then $E \subseteq E \cap \mathbb{D}$. Hence $E \cap \mathbb{D} \subseteq E \subseteq E \cap \mathbb{D}$. Since $E \cap \mathbb{D} \in \mathcal{U}$, we have, by Corollary 2.2, that $E \in \mathcal{U}$.

Let us now assume that $S \neq \emptyset$. By Theorem 4.10, $S \subseteq \partial H^\infty$. Note that S is not a singleton, since otherwise E would contain an isolated point. This would contradict the fact that E is t-analytic.

Let U be an open set in $M(H^\infty)$ with $U \cap S \neq \emptyset$ and let $f \in H^\infty$ be such that $f \equiv 0$ on $U \cap S$. By passing to a subset, we may assume that $U \cap E \cap \mathbb{D} = \emptyset$, but still $U \cap S \neq \emptyset$. Hence $U \cap S = U \cap E$. Since E is t-analytic, we get that $f \equiv 0$ on E. In particular, $f \equiv 0$ on S. Thus S is t-analytic. By Theorem 4.1, S is in \mathcal{U}. By Proposition 2.7, $S \cup E \cap \mathbb{D} \in \mathcal{U}$. Since $E = S \cup E \cap \mathbb{D}$, we conclude that $E \in \mathcal{U}$. \hfill \square

Let \mathcal{F} denote the class of subsets F of \mathbb{D} that do not contain any isolated points, let \mathcal{U}_c denote the class of those strong uniqueness sets for H^∞ that are closed. The following concluding theorems sum up the different situations dealt with above.

Theorem 4.13. — Let $E \subseteq M(H^\infty)$ be closed. Then $E \in \mathcal{U}_c\cup\{\emptyset\}$ if and only if $E = K \cup \mathcal{F}$, where $F \in \mathcal{F}$ and where $K \subseteq \partial H^\infty$ is a closed set such that for every Lebesgue measurable set $S \subseteq \mathbb{T}$ with strictly positive Lebesgue measure either $\hat{\sigma}(K \cap \{\hat{\chi}_S = 1\}) > 0$ or $K \cap \{\hat{\chi}_S = 1\} = \emptyset$.

Proof. — Let $E = K \cup \mathcal{F}$, where K and F satisfy the conditions above. By Theorem 4.3, $K \in \mathcal{U}$ whenever $K \neq \emptyset$. By Theorem 4.9, $F \in \mathcal{U}$ whenever $F \neq \emptyset$. By Proposition 2.7, $E \in \mathcal{U}$.

Conversely, let $E \in \mathcal{U}_c$. We discuss two cases:

Case 1. $E \cap \mathbb{D} \neq \emptyset$. Since strong uniqueness sets do not contain isolated points, $E \cap \mathbb{D} \in \mathcal{F}$. Hence, by Theorem 4.9, $E \cap \mathbb{D} \in \mathcal{U}$. Moreover, by Proposition 2.1, $E \cap \mathbb{D} \in \mathcal{U}$. If $E \cap \mathbb{D} = E$, then we are done. So suppose...
that \(E \cap \mathbb{D} \subsetneq E \). By the observation 2.3, \(E \setminus E \cap \mathbb{D} \in \mathcal{V} \), and so again,
\[
K := E \setminus \overline{E \cap \mathbb{D}} \in \mathcal{V}.
\]
But by Theorem 4.10, \(K \subseteq \partial H^\infty \). Hence we can conclude from Theorem 4.3 that \(K \) has the desired property. Since \(E = \overline{F} \cup K \), where \(F = E \cap \mathbb{D} \), we are done.

Case 2. \(E \cap \mathbb{D} = \emptyset \). Theorem 4.7 implies that either \(E \subseteq \partial H^\infty \), or \(E \cap \partial H^\infty = \emptyset \). We shall see that the hypotheses \(E \in \mathcal{Y} \) implies that the second case does not occur. So suppose that \(E \subseteq M(H^\infty + C) \setminus \partial H^\infty \). Then, by Lemma 4.6, \(E \subseteq k(x) \) for \(x \in E \). Hence the hull-kernel closure in \(M(H^\infty) \) of \(E \) is contained in \(k(x) \), too (see Lemma 4.5). Thus \(E \) cannot be a strong uniqueness set. We conclude that \(E \subseteq \partial H^\infty \). Using Theorem 4.3 again, we see that \(K := E \) has the property we wish. \(\square \)

Combining Theorems 4.3, 4.12 and 4.13, we get the following result.

Theorem 4.14. — The class \(\mathcal{A}_D \) of closed \(t \)-analytic sets for \(H^\infty \) that meet \(\mathbb{D} \) is given by \(\mathcal{A}_D = \mathcal{A}_1 \cup \mathcal{A}_2 \), where
\[
\mathcal{A}_1 = \{ \{ z_0 \} : z_0 \in \mathbb{D} \},
\]
and
\[
\mathcal{A}_2 = \{ K \cup \overline{F} : \emptyset \neq F \subset \mathbb{D}, F \in \mathcal{F}, K \subseteq \partial H^\infty, K \in \mathcal{Y}_c \text{ or } K = \emptyset \}.
\]

Finally, a combination of theorems 4.7, 4.8 and 4.12 yields:

Theorem 4.15. — The class \(\mathcal{A}_{\text{cor}} \) of closed \(t \)-analytic sets for \(H^\infty \) contained in the corona \(M(H^\infty + C) \) of \(H^\infty \) is given by \(\mathcal{A}_{\text{cor}} = \mathcal{A}_3 \cup \mathcal{A}_4 \), where
\[
\mathcal{A}_3 = \{ E : E \text{ \(t \)-analytic for } H^\infty + C \}
\]
and
\[
\mathcal{A}_4 = \{ E : E \subseteq \partial H^\infty, E \in \mathcal{Y}_c \}.
\]

Acknowledgement

I thank Keiji Izuchi for having shown to me a proof of Lemma 4.2 and for suggesting to include it in my paper. I also thank Joel Feinstein for his numerous comments.
References

Raymond Mortini, Département de Mathématiques, LMAM, UMR 7122, Université Paul Verlaine, Ile du Saulcy, F-57045 Metz, France
E-mail: mortini@univ-metz.fr