A CLASSROOM NOTE

HARMONIC CONJUGATES IN ARBITRARY PLANAR DOMAINS

RAYMOND MORTINI

It is well known that every harmonic function, \(u \), in a simply connected planar domain \(\Omega \) admits a harmonic conjugate \(v \); that is a harmonic function \(v \) for which \(f := u + iv \) is holomorphic in \(\Omega \). The case of the punctured disk \(\{ z \in \mathbb{C} : 0 < |z| < 1 \} \) and the function \(u(z) = \log |z| \) show that the assertion above is no longer true in arbitrary domains. The aim of this elementary note is to present a necessary and sufficient condition for a harmonic function defined on an arbitrary planar domain \(\Omega \) in order to have a harmonic conjugate. The result, I did not find in any textbook, does not seem to be widely known. Its proof is well suited for presentation in any introductory course on complex function theory.

To begin with, let \(\Omega_m \) be a finitely connected domain in \(\mathbb{C} \) bounded by \(m \) pairwise disjoint smooth Jordan curves and let \(u \) and \(v \) be two functions continuously differentiable on a neighborhood of the closure \(\overline{\Omega}_m \) of \(\Omega_m \). Then, by taking a suitable orientation of the boundary curves of \(\Omega_m \), it follows from Green’s theorem ([Ga], p. 390) that

\[
\int_{\Omega_m} (u \Delta v - v \Delta u) dxdy = \int_{\partial \Omega_m} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) d\sigma,
\]

where \(d\sigma \) denotes the differential with respect to arclength and \(\frac{\partial}{\partial n} \) the derivative with respect to the outer normal to the curve. In particular, if \(u \) is harmonic, that is \(\Delta u = 0 \), in a neighborhood of \(\overline{\Omega}_m \), then

\[
\int_{\partial \Omega_m} \frac{\partial u}{\partial n} d\sigma = 0.
\]

(To see this, just take \(v \equiv 1 \) and note that harmonic functions are at least twice continuously differentiable.)

Moreover, if \(u \) is a \(C^2 \)-function in a domain

1991 Mathematics Subject Classification. Primary 31A05, 30-99.

Key words and phrases. harmonic functions, harmonic conjugate, Green’s formula.
$\Omega \subseteq \mathbb{C}$, then it easily follows from (1) that u is harmonic in Ω if and only

$$\int_{\partial D} \frac{\partial u}{\partial n} d\sigma = 0$$

for every small disk D contained in Ω. On the other hand, for harmonic functions u in D, it may be that $\int_{\Gamma} \frac{\partial u}{\partial n} d\sigma \neq 0$ for some closed piecewise smooth curves Γ in D. The following theorem shows that this happens exactly when u does not have a harmonic conjugate.

Theorem 1. Let Ω be an arbitrary domain in \mathbb{C} and let u be harmonic in Ω. Then a necessary and sufficient condition on u in order that u has a harmonic conjugate in Ω is that for any closed, piecewise smooth curve $\Gamma \subset \Omega$ we have

$$\int_{\Gamma} \frac{\partial u}{\partial n} d\sigma = 0. \tag{2}$$

Proof. As usual, let u_x and u_y denote the partial derivatives of u with respect to the variables x and y. Let $t = t(x,y)$ denote the oriented, normalized, tangent vector to the curve Γ at the point (x,y) and $n = n(x,y)$ the normal vector to t, obtained by rotating t by 90 degree clockwise. Let $g = u_x - iu_y$. Since u is harmonic, g satisfies the Cauchy-Riemann differential equations; hence g is holomorphic in Ω. Let $z = x + iy$ and $dz = dx + idy$. Then

$$\int_{\Gamma} gdz = \int_{\Gamma} (u_x dx + u_y dy) + i \int_{\Gamma} (u_x dy - u_y dx) = \int_{\Gamma} \frac{\partial u}{\partial t} d\sigma + i \int_{\Gamma} \frac{\partial u}{\partial n} d\sigma. \tag{3}$$

Now suppose that u admits a harmonic conjugate v on Ω. Then $f := u + iv$ is holomorphic in Ω and, by using the Cauchy-Riemann differential equations, we see that $g = f'$. Thus g has a primitive and so the integral of g over any closed curve is zero; in particular, by (3), $\int_{\Gamma} \frac{\partial u}{\partial n} d\sigma = 0$.

To prove the converse, fix $z_0 \in \Omega$. For $z \in \Omega$, let Γ_z denote a piecewise smooth curve in Ω joining z_0 with z. Define a function v on Ω by

$$v(z) = \int_{\Gamma_z} \frac{\partial u}{\partial n} d\sigma$$

(see also [Ma], vol II, p. 146). By our hypothesis, v is well defined. Moreover, $v(z) = \int_{\Gamma_z} (u_x dy - u_y dx)$. Clearly, v is continuous on Ω. Next we show that the partial derivatives of v exist and that $v_x = -u_y$ and $v_y = u_x$. Hence v is infinitely often differentiable and the pair (u, v) satisfies the Cauchy-Riemann differential equations. Moreover, by Schwarz, it follows that $\Delta v = v_{xx} + v_{yy} = -u_{xx} + u_{xy} \equiv 0$. Hence v is harmonic. Thus v is the harmonic conjugate we were looking for.

Fix $z \in \Omega$ and let h be a nonzero real number, $|h|$ so small that the segment $[z, z + h]$ joining z with $z + h$ is contained in Ω. Look upon z as a point in \mathbb{R}^2, say $z = (\xi, \eta)$, and choose the parametrization $(x(s), y(s)) = (\xi + sh, \eta), \quad (0 \leq s \leq 1)$, of the segment $[z, z + h]$. Then, as $h \to 0$,

$$\frac{v(z + h) - v(z)}{h} = - \int_0^1 u_y(\xi + sh, \eta) ds \to -u_y(\xi, \eta).$$

Thus v_x exists and $v_x = -u_y$. Similiarly for v_y. \qed
For additional reading in the case of a finitely connected planar domain Ω, we refer the reader to a paper of S. Axler [A], where a nice proof of the "Logarithmic Conjugation Theorem" is given: let K_j, $(j = 1, \ldots, N)$ be the bounded connected components of $\mathbb{C} \setminus \Omega$ and let u be harmonic in Ω. Then for any choice of points $a_j \in K_j$ there exists real numbers c_j and a function f holomorphic in Ω, such that

$$u(z) = \text{Re} f(z) + \sum_{j=1}^{N} c_j \log |z - a_j| \quad (z \in \Omega).$$

For an abstract approach in the context of harmonic forms on Riemannian manifolds, the interested reader could consult [GK].

Finally we note that relation (2) is known in applied mathematics as the no flux condition (see e.g. [Ga], p. 90), but is often related to the finite connectedness of the domain. We refer the reader to [GR] for typical applications of this condition in the study of conductivity problems or Navier-Stokes equations.

Acknowledgments

I thank Dorin Bucur for several discussions on the theme of this note.

References

DÉPARTEMENT DE MATHEMATIQUES, UNIVERSITÉ DE METZ, ILE DU SAULCY, F-57045 METZ, FRANCE

E-mail address: mortini@math.univ-metz.fr